Tetracarbonyl[difluoromethylenebis(diisopropoxyphosphine-P)]molybdenum(0)

PETER G. JONES

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: jones@xray36.anchem.nat. tu-bs.de

(Received 18 March 1998; accepted 21 April 1998)

Abstract

The title compound, $[{({}^{i}PrO)_{2}PCF_{2}P(O^{i}Pr)_{2}}Mo(CO)_{4}]$ or [Mo(C₁₃H₂₈F₂O₄P₂)(CO)₄], crystallizes without imposed symmetry. The four-membered ring is folded by 21.2 (1)° about the $P \cdots P$ axis. The Mo-P bonds are short [2.4351 (7) and 2.4445 (8) Å] and the P-C bonds long [1.889(2) and 1.892(3) Å] compared with systems lacking electronegative substituents.

Comment

We are interested in the structures of diphosphines containing the P-CF₂-P moiety, and of their metal complexes (Fild et al., 1994; Jones, 1996; Jones & Bembenek, 1996; Jones & Thöne, 1997). The structure of the CH₂ analogue of the title compound, (I), is known (Fild et al., 1980).

The title compound crystallizes with no imposed symmetry (Fig. 1); it is not isostructural with the CH₂ analogue (Fild et al., 1980), which crystallizes in the orthorhombic space group Pccn, also without imposed symmetry. The structure of the free ligand is not available for comparison.

The four-membered Mo-P-C-P ring is folded by 21.2 (1)° about the $P \cdots P$ axis; the ring in the CH₂ analogue is flatter, with a fold angle of 15.8°. The presence of a small ring is necessarily associated with large deviations from ideal bond angles. The P1-Mo-P2 'bite' angle is only 69.64 (2)°, with the corresponding P1...P2 distance being 2.7863 (9) Å; other angles at Mo are affected in turn, e.g. C11-Mo-P2 162.14 (7)°.

In the title compound, the Mo-P bond lengths [2.4351(7) and 2.4445(8) Å] are significantly shortened with respect to the CH_2 analogue [2.463(2) and

Fig. 1. The molecular structure of the title compound in the crystal. Ellipsoids represent 30% probability levels and H atoms have been omitted for clarity.

2.473 (2) Å]; we and others have already noted that phosphines bearing electronegative substituents tend to form short metal-phosphorus bonds (Heuer et al., 1989, and references therein). A shortening of the Mo-C bond trans to phosphorus is observed [2.012(2) and 2.014 (2) Å, relative to the cis-Mo-C values of 2.035(2) and 2.043(2) Å]; in the CH₂ analogue, the differences were less clear-cut because of higher s.u.'s (Fild et al., 1980).

The P-C bonds are long [1.889(2) and 1.892(3) Å, cf. 1.823 (6) and 1.843 (6) Å in the CH₂ analogue]; we have previously observed that P-C bonds involving halogenated carbon are systematically lengthened with respect to non-halogenated systems (Jones & Bembenek, 1996, and references therein).

Experimental

The title compound was obtained from [(norbornadiene)Mo- $(CO)_4$ and the disphosphine in toluene (Reichert, 1985). and recrystallized by slow cooling of a saturated solution in petroleum ether (313-333 K boiling fraction).

Crystal data

 $[Mo(C_{13}H_{28}F_2O_4P_2)(CO)_4]$ Mo $K\alpha$ radiation $M_r = 556.27$ $\lambda = 0.71073 \text{ Å}$ Monoclinic Cell parameters from 50 $P2_{1}/c$ reflections $\theta = 10.0\text{--}11.5^{\circ}$ a = 9.887(2) Å $\mu = 0.708 \text{ mm}^{-1}$ b = 12.666(3) Å c = 20.345(4) Å T = 178(2) K $\beta = 102.78 (2)^{\circ}$ Irregular tablet $V = 2484.7(9) \text{ Å}^3$ $0.60 \times 0.55 \times 0.35$ mm Z = 4 Colourless $D_x = 1.487 \text{ Mg m}^{-3}$ D_m not measured

$[Mo(C_{13}H_{28}F_2O_4P_2)(CO)_4]$

Data collection

Nicolet R3 diffractometer	$R_{\rm int} = 0.021$
ω scans	$\theta_{\rm max} = 27.56^{\circ}$
Absorption correction:	$h = 0 \rightarrow 12$
ψ scans (<i>XEMP</i> ; Siemens	$k = -16 \rightarrow 16$
1994a)	$l = -26 \rightarrow 25$
$T_{\rm min} = 0.732, T_{\rm max} = 0.817$	3 standard reflections
11 818 measured reflections	every 147 reflections
5729 independent reflections	intensity decay: 3.3%
4696 reflections with	
$I > 2\sigma(I)$	

Refinement

$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
SHELXL97
Extinction coefficient:
0.0052 (4)
Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

Mo-C11	2.012(2)	Mo—P1	2.4351 (7)
Mo-C14	2.014 (2)	Mo-P2	2.4445 (8)
Mo-C13	2.035 (2)	P1C1	1.889 (2)
Mo-C12	2.043 (2)	P2—C1	1.892 (3)
P1—Mo—P2	69.64 (2)	F1-C1-F2	105.89 (18)
C1-P1-Mo	95.75 (8)	P1-C1-P2	94.93 (10)
C1-P2-Mo	95.37 (7)		

Methyl H atoms were included using rigid groups (starting positions were taken from difference syntheses and then allowed to rotate but not tip). Methine H atoms were treated using a riding model starting from calculated positions.

Data collection: P3 Software (Nicolet, 1987). Cell refinement: P3 Software. Data reduction: XDISK in P3 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP (Siemens, 1994b). Software used to prepare material for publication: SHELXL97.

The title compound was synthesized and entrusted to me by Dr J. Martens and Professor M. Fild, to whom I am grateful. I thank the Fonds der Chemischen Industrie for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1251). Services for accessing these data are described at the back of the journal.

References

- Fild, M., Handke, W. & Sheldrick, W. S. (1980). Z. Naturforsch. Teil B, 35, 838-842.
- Fild, M., Jones, P. G., Ruhnau, K. & Thöne, C. (1994). Z. Naturforsch. Teil B, 49, 1361–1367.
- Heuer, L., Bode, U., Jones, P. G. & Schmutzler, R. (1989). Z. Naturforsch. Teil B, 44, 1082-1092.
- Jones, P. G. (1996). Acta Cryst. C52, 1919-1921.
- Jones, P. G. & Bembenek, E. (1996). Acta Cryst. C52, 2396-2399.
- Jones, P. G. & Thöne, C. (1991). Acta Cryst. C53, 42-45.
- Nicolet (1987). P3 Software. Nicolet Analytical X-ray Instruments. Madison, Wisconsin, USA.
- Reichert, K. (1985). Diplomarbeit, Technical University of Braunschweig, Germany.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994a). XEMP. Program for Absorption Correction. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994b). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.